Converting Advanced Lab Courses to Research Collaborations

Return to search results | New search

Title of Abstract: Converting Advanced Lab Courses to Research Collaborations

Name of Author: Douglas Chalker
Author Company or Institution: Washington University
Author Title: Associate Professor
PULSE Fellow: No
Applicable Courses: Biochemistry and Molecular Biology, Bioinformatics, Cell Biology, Genetics, Microbiology, Plant Biology & Botany, Virology
Course Levels: Upper Division Course(s)
Approaches: Changes in Classroom Approach (flipped classroom, clickers, POGIL, etc.), Mixed Approach
Keywords: Classroom Research CURE Survey Advanced Laboratory Faculty development active inquiry

Name, Title, and Institution of Author(s): Sarah Elgin, Washington University in St Louis

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: Engaging students in authentic research experiences improves persistence and success in STEM majors and careers. Participation in research is also correlated with improved critical thinking and deeper conceptual understanding of science. To provide as many research opportunities as possible, most biology laboratory courses are now structured as investigative experiences in which students undertake original, collaborative research projects.

Describe the methods and strategies that you are using: Biology Department Faculty are encouraged to incorporate research projects based on their own research interests into the lab courses that they teach. The success of this approach by a few has encouraged other faculty to develop new courses or redesign previously existing ones in this manner. Almost all current Biology laboratory offerings have investigative components. Class-based, original research experiences encompassing a broad range of subjects (e.g. bioinformatics, molecular and cell biology, biochemistry, immunology and ecology) are now available to a large percentage of our biology majors. Some inquiry-based modules were designed by graduate or post-doctoral teaching assistants, which provided important professional development for this next generation of educators. In Prof. S.C.R. Elgin’s bioinformatics lab (Biology 4342), students are provided a ~40kbp segment of DNA sequence from an ongoing genome project and are asked to suggest needed finishing sequencing and then annotate the region. In Prof. D.L. Chalker’s cell biology lab (Biology 3492), students functionally characterize their own unstudied gene predicted from the genome sequence of the model ciliate Tetrahymena. Students clone their chosen gene, make and describe the localization of a fluorescent protein fusion to the gene’s coding region among other studies.

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: In these courses, student data are used to update scientific databases and have been distributed through research publications, with enrolled students acknowledged or recognized as authors, demonstrating that students in class investigative labs can contribute novel research findings (2-5). With professors teaching closely aligned with areas of research interest, they are intellectually engaged, benefit in a tangible manner from the time investment, and are better able to communicate their passion for science. As judged by teaching evaluations and exit surveys, these courses are among students’ favorites from among our offerings. Assessment data collected over four years (n=37) using the Classroom Undergraduate Research Experience (CURE) survey in one course (Biology 3492) revealed clear gains in students’ understanding of the research process, readiness for more demanding research, understanding how scientists approach real world problems, and the ability to analyze data. Gains in this course compared favorably to the gains noted in a parallel survey of independent undergraduate research experiences (SURE). In addition, course-based research experiences provide other student growth opportunities in areas that are complementary to those that result from independent mentored research, such as science writing and oral presentation.

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: Overall, our experiences indicate that encouraging integration of faculty research with teaching can promote the adoption of innovative curriculum, help transform teaching practice throughout a department or other community, and motivate faculty members to promote the most effective pedagogy beyond their own institution.

Describe any unexpected challenges you encountered and your methods for dealing with them: One of the biggest challenges is encountered in assessing the effectiveness of this pedagogy. Discipline faculty are not trained in educational assessment and have limited time to develop these skills. Similar challenges are found in dissemination as encouraging faculty at other institutions to adopt this strategy can be difficult without administrative by-in. Seeking outside funding for dissemination can help meet this need as it removes budgetary concerns from the administration.

Describe your completed dissemination activities and your plans for continuing dissemination: In addition to wide adoption of this strategy in the Biology department, several faculty members are engaged in efforts to disseminate their curricula to other institutions. The most successful initiative has been the Genomics Education Partnership (https://gep.wustl.edu) (1), based on Biology 4342, which has been disseminated widely. A second model for dissemination is the Ciliate Genomics Consortium, based on Biology 3492 curriculum, which brings together members of an existing research community to form a professional learning community to implement effective teaching strategies.

Acknowledgements: References: 1. Lopatto, D., et al. 2008. Undergraduate research. Science 322:684-5. 2. Malone, C. D., et al. 2005. Mol Cell Biol 25:9151-64. 3. Malone, C. D., et al. 2008. Eukaryot Cell 7:1487-99. 4. Shaffer, Cet al.. 2010. CBE Life Sci Educ 9:55-69. 5. Leung et al 2010, Genetics 185:1519-1534. Acknowledgements: This abstract reports the efforts of many colleagues: Drs. J Jez, R. Kranz, E, Herzog, B. Carlson,and L. Strader, D. Mendez, and S. Horrell. Funding was provided by HHMI and NSF grants to Washington University or the listed professors.