Converting Advanced Lab Courses to Research Collaborations

Return to search results | New search

Title of Abstract: Converting Advanced Lab Courses to Research Collaborations

Name of Author: Douglas Chalker
Author Company or Institution: Washington University
Author Title: Associate Professor
PULSE Fellow: No
Applicable Courses: Biochemistry and Molecular Biology, Bioinformatics, Cell Biology, Genetics, Microbiology, Plant Biology & Botany, Virology
Course Levels: Upper Division Course(s)
Approaches: Changes in Classroom Approach (flipped classroom, clickers, POGIL, etc.), Mixed Approach
Keywords: Classroom Research CURE Survey Advanced Laboratory Faculty development active inquiry

Name, Title, and Institution of Author(s): Sarah Elgin, Washington University in St Louis

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: Engaging students in authentic research experiences improves persistence and success in STEM majors and careers. Participation in research is also correlated with improved critical thinking and deeper conceptual understanding of science. To provide as many research opportunities as possible, most biology laboratory courses are now structured as investigative experiences in which students undertake original, collaborative research projects.

Describe the methods and strategies that you are using: Biology Department Faculty are encouraged to incorporate research projects based on their own research interests into the lab courses that they teach. The success of this approach by a few has encouraged other faculty to develop new courses or redesign previously existing ones in this manner. Almost all current Biology laboratory offerings have investigative components. Class-based, original research experiences encompassing a broad range of subjects (e.g. bioinformatics, molecular and cell biology, biochemistry, immunology and ecology) are now available to a large percentage of our biology majors. Some inquiry-based modules were designed by graduate or post-doctoral teaching assistants, which provided important professional development for this next generation of educators. In Prof. S.C.R. Elgin’s bioinformatics lab (Biology 4342), students are provided a ~40kbp segment of DNA sequence from an ongoing genome project and are asked to suggest needed finishing sequencing and then annotate the region. In Prof. D.L. Chalker’s cell biology lab (Biology 3492), students functionally characterize their own unstudied gene predicted from the genome sequence of the model ciliate Tetrahymena. Students clone their chosen gene, make and describe the localization of a fluorescent protein fusion to the gene’s coding region among other studies.

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: In these courses, student data are used to update scientific databases and have been distributed through research publications, with enrolled students acknowledged or recognized as authors, demonstrating that students in class investigative labs can contribute novel research findings (2-5). With professors teaching closely aligned with areas of research interest, they are intellectually engaged, benefit in a tangible manner from the time investment, and are better able to communicate their passion for science. As judged by teaching evaluations and exit surveys, these courses are among students’ favorites from among our offerings. Assessment data collected over four years (n=37) using the Classroom Undergraduate Research Experience (CURE) survey in one course (Biology 3492) revealed clear gains in students’ understanding of the research process, readiness for more demanding research, understanding how scientists approach real world problems, and the ability to analyze data. Gains in this course compared favorably to the gains noted in a parallel survey of independent undergraduate research experiences (SURE). In addition, course-based research experiences provide other student growth opportunities in areas that are complementary to those that result from independent mentored research, such as science writing and oral presentation.

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: Overall, our experiences indicate that encouraging integration of faculty research with teaching can promote the adoption of innovative curriculum, help transform teaching practice throughout a department or other community, and motivate faculty members to promote the most effective pedagogy beyond their own institution.

Describe any unexpected challenges you encountered and your methods for dealing with them: One of the biggest challenges is encountered in assessing the effectiveness of this pedagogy. Discipline faculty are not trained in educational assessment and have limited time to develop these skills. Similar challenges are found in dissemination as encouraging faculty at other institutions to adopt this strategy can be difficult without administrative by-in. Seeking outside funding for dissemination can help meet this need as it removes budgetary concerns from the administration.

Describe your completed dissemination activities and your plans for continuing dissemination: In addition to wide adoption of this strategy in the Biology department, several faculty members are engaged in efforts to disseminate their curricula to other institutions. The most successful initiative has been the Genomics Education Partnership (https://gep.wustl.edu) (1), based on Biology 4342, which has been disseminated widely. A second model for dissemination is the Ciliate Genomics Consortium, based on Biology 3492 curriculum, which brings together members of an existing research community to form a professional learning community to implement effective teaching strategies.

Acknowledgements: References: 1. Lopatto, D., et al. 2008. Undergraduate research. Science 322:684-5. 2. Malone, C. D., et al. 2005. Mol Cell Biol 25:9151-64. 3. Malone, C. D., et al. 2008. Eukaryot Cell 7:1487-99. 4. Shaffer, Cet al.. 2010. CBE Life Sci Educ 9:55-69. 5. Leung et al 2010, Genetics 185:1519-1534. Acknowledgements: This abstract reports the efforts of many colleagues: Drs. J Jez, R. Kranz, E, Herzog, B. Carlson,and L. Strader, D. Mendez, and S. Horrell. Funding was provided by HHMI and NSF grants to Washington University or the listed professors.

The Genomics Education Partnership: Shared Research

Return to search results | New search

Title of Abstract: The Genomics Education Partnership: Shared Research

Name of Author: Sarah C R Elgin
Author Company or Institution: Washington University in St Louis
Author Title: Professor
PULSE Fellow: No
Applicable Courses: Biochemistry and Molecular Biology, Bioinformatics, Biotechnology, Evolutionary Biology, Genetics
Course Levels: Independent study / research, Introductory Course(s), Upper Division Course(s)
Approaches: Changes in Classroom Approach (flipped classroom, clickers, POGIL, etc.)
Keywords: bioinformatics comparative genomics eukaryotic genes/genomes research lab course collaborative network

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: The Genomics Education Partnership (GEP) was founded in 2006 to provide undergraduates with an opportunity to participate in a large-scale genomics research project. By incorporating genomics research into the undergraduate curriculum, the GEP faculty members can provide a research experience for a larger number of students than can generally be accommodated in a traditional summer research program. Our major research goal has been to examine the evolution of the ‘dot’ chromosome (Muller F element) of Drosophila, an unusual domain that exhibits both heterochromatic and euchromatic properties. (Our first publication is Leung, W. et al. 2010 Genetics 185: 1519-1534, Evolution of a distinct genomic domain in Drosophila: Comparative analysis of the dot chromosome in Drosophila melanogaster and Drosophila virilis. Our second publication, in preparation, will have ~500 student and ~50 faculty co-authors.) Future projects will focus on the expansion of the F element in a subgroup of species, and on the search for conserved motifs specific to this element and its genes.

Describe the methods and strategies that you are using: Bioinformatics research typically requires only access to computers and the Internet, and thus has lower costs and fewer lab safety concerns than most life science research. While GEP faculty members teach students a common set of bioinformatics protocols, each student in the class applies their knowledge to a unique region of a genome, taking responsibility for their own project. We find that students can effectively acquire many bioinformatics skills through peer instruction, allowing a team approach to the research. A genomics-based course has the advantage that a central website (maintained by W. Leung and C.D. Shaffer, Washington University in St Louis) can support the efforts of a large number of faculty and their students across the country, providing cost-effective implementation. An anonymous survey of the GEP faculty has shown that this central support is of critical importance in enabling the faculty to introduce this novel, research-centered curriculum to their campuses.

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: To assess the undergraduate experience, students are asked to take a pre/post course quiz and survey. The quiz tests student knowledge of eukaryotic genes and genomes. The survey examines science-related attitudes, and includes 20 questions that are identical to the nationally utilized Survey of Undergraduate Research Experiences. All research projects (~40 kb segments of the domain of interest) are completed at least twice independently by students at different schools, and the results reconciled. Final results are submitted to GenBank and connected to FlyBase.

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: Student members of the GEP have improved over 7 megabases of sequence (from the F element, and a euchromatic reference region at the base of the D element) and produced more than 1,000 manually curated gene models, as well as annotating other features of these domains. Last year over 1000 students from 54 colleges and universities participated in GEP-affiliated lab courses. Student results for four Drosophila species are currently being assembled and analyzed to better understand the evolution of this domain (manuscript in preparation). Students show significant gains on the quiz, which tests their understanding of the structure and function of eukaryotic genes and genomes. Their responses on the CURE survey are generally the same or better than responses from students who have spent a summer in a mentored research experience, assessed by the parallel SURE survey (supervised by D. Lopatto, Grinnell College). The pedagogical results confirm and extend our prior findings (Lopatto et al. 2008 Science 322: 684-85, Undergraduate Research: Genomics Education Partnership; Shaffer et al. 2010 CBE-Life Sci Educ 9: 55-69, The Genomics Education Partnership: Successful integration of research into laboratory classes at a diverse group of undergraduate institutions). Positive responses on the quiz and survey show little correlation with characteristics of the home institution (e.g. private vs. public, school size, etc.), but do correlate with the amount of time that the faculty member can schedule for GEP-related work (lecture/discussion plus lab time); more time enables a more beneficial research experience. As GEP member schools are very diverse, these results are consistent with the interpretation that students from all backgrounds, working in a variety of settings, will benefit from participating in a research-based lab course.

Describe any unexpected challenges you encountered and your methods for dealing with them: While a centralized project such as that run by the GEP is an excellent way for faculty to begin teaching research-based laboratory courses, ultimately one would like that research to be directly tied to the research interests of the individual faculty member. Better bioinformatics interfaces (for example, an easy route for loading a new genome into a browser such as the UCSC Browser) are needed to reach this goal.

Describe your completed dissemination activities and your plans for continuing dissemination: Since its inception, the GEP has grown substantially, and now has over 100 partner schools (see current members at https://gep.wustl.edu). Members join by attending a 3 - 5 day workshop at Washington University. All curriculum is freely available on the GEP website under a Creative Commons license. We find that the collaborative nature of a shared research effort helps to make this an enjoyable and effective way to teach. The results suggest that such national projects are cost-effective, can have a widespread impact on life-science teaching, and should be supported in greater number.

Acknowledgements: I thank all faculty members of the GEP (see https://gep.wustl.edu/community/current_members) and their students; Jeremy Buhler, Elaine Mardis, Chris Shaffer, and Wilson Leung, all of Washington University; and David Lopatto, Grinnell College, for their participation in this project. This work has been supported by the Howard Hughes Medical Institute through grant #52007051 to SCRE and by Washington University in St Louis.

Improving Undergrad Biology via Engagement & Collaboration

Return to search results | New search

Title of Abstract: Improving Undergrad Biology via Engagement & Collaboration

Name of Author: John Geiser
Author Company or Institution: Western Michigan University
PULSE Fellow: No
Applicable Courses: Biochemistry and Molecular Biology, General Biology
Course Levels: Faculty Development, Introductory Course(s)
Approaches: Changes in Classroom Approach (flipped classroom, clickers, POGIL, etc.), Material Development, Mixed Approach
Keywords: Introductory Biology Chemistry Interdisciplinary Teaching Assistant

Name, Title, and Institution of Author(s): Renee Schwartz, Western Michigan University

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: The goal of our undergraduate biology change project was to enhance the relevance and accessibility of our introductory level biology courses. Beginning in 2009, we gathered instructors from biology, chemistry, and science education to improve the first-year experience of our science majors. Students take both introductory biology and chemistry, often at the same time; yet they often fail to see the relevance of either subject to their lives or connections of biology and chemistry concepts to each other. We secured NSF funding to develop 10 new laboratory investigations that highlighted the interdependence of biology and chemistry concepts and engaged students in active investigations. Impact on student outcomes was determined by comparing students who experienced the new lessons with a control group who experienced the regular lessons. A key to successfully implementing the revised laboratory lessons involved the preparation of teaching assistants [TAs]. TAs had to be comfortable using inquiry as the basis for their teaching as opposed to the more common model of laboratory facilitator. Our model focuses on developing teaching expertise in future faculty as well as current faculty. Interdisciplinary collaboration and peer support have been key factors for our program.

Describe the methods and strategies that you are using: Undergraduates - Students were exposed to five integrated, inquiry based laboratory modules during the twelve week laboratory schedule. Control laboratory sections received the regular laboratory without additional inquiry included. Teaching Assistants - We designed weekly professional development sessions for the TAs to gain an understanding of inquiry teaching as well as general pedagogical skills such as questioning, formative assessments, and classroom management. Faculty - A summer workshop was created to expose faculty and TAs to inquiry based learning. Faculty and TAs from biology and chemistry discussed common themes. Writing time was provided for incorporating inquiry activities into the laboratory modules followed by group discussion for improvements.

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: Undergraduates - Pre/post assessment was used to assess understanding of concepts related to the improved laboratories. Attitudinal surveys were used to follow student interest. Teaching Assistants - We studied the impact on TA development. Data sources included reflection writings, field notes, classroom videos, and interviews with the TAs.

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: Undergraduates - Pre/post assessment indicated the students who experienced the new investigations gained a better understanding of some of the concepts, especially those in biology. Attitude surveys documented increases in student interest in the investigations and in biology. Teaching Assistants - Results demonstrate the impact of the sessions on TA growth as inquiry instructors. Initially, the TAs were concerned about their abilities to teach in an active/inquiry style. They also had doubts regarding undergraduates’ abilities to be successful in that learning environment. These barriers were overcome through group discussions and sharing success stories. TAs gained comfort with relinquishing control to their students. Little successes encouraged them to try new strategies, such as classroom assessment techniques. By the end of the semester, most of the TAs embraced an inquiry style and came to believe their students were not only capable of taking ownership for their labs and designing valid investigations, but that their students came to enjoy the experience more than the regular labs. Faculty - The faculty who teach the lecture portion of the classes began questioning the sole use of the lecture format during the classes. Interdisciplinary group discussion focused on ways to inform and support additional faculty to change teaching strategies. Geiser has shifted his research interests and energies to biology education.

Describe any unexpected challenges you encountered and your methods for dealing with them: Barriers still exist. One of the most formidable is overcoming inertia to change. In the institutional setting, tenure is the driving force and until the institution acknowledges scholarship of learning on par with traditional laboratory research, faculty will not value it as a means to tenure. We need to shift the culture of what constitutes scholarship. Change is slow. Having three science educators within our department provides visibility for what the scholarship of teaching and learning can accomplish. Having biology faculty participate in a journal club and seek support for revising their instruction, and having a graduate course in teaching methods demonstrates a growing commitment for improving undergraduate biology education.

Describe your completed dissemination activities and your plans for continuing dissemination: We have already presented our findings during the 2012 NARST and NABT conferences. We are finishing our evaluation of data and plan to submit articles describing the curricular change and TA impact in the near future. All five laboratory modules are available for anyone to incorporate into their curriculum. Our interdisciplinary group served as a core to create an education focused biology journal club. The journal club engaged three additional faculty members interested in learning more. While the content of the journal club was valuable, what it did was identify a group of faculty interested in discussing curricular and instructional changes. This created a tipping point for the department because prior to this time many of us were unaware of the others interest in teaching methods and instructional change. Together, we have become a vocal minority for change within the department. As a group we are questioning old assumptions and multiple instructors are now engaging in SoTL projects within their classrooms and trying new techniques to engage the students.

Acknowledgements: NSF Grant. Engaging STEM Students from the Beginning: An Interdependent Approach to Introductory Chemistry and Cellular Biology, DUE - CCLI-Phase 1: Exploratory, Renee Schwartz, PI

Inquiry-Based Genomics Lab Module Collection

Return to search results | New search

Title of Abstract: Inquiry-Based Genomics Lab Module Collection

Name of Author: Lois Banta
Author Company or Institution: Williams College
Author Title: Associate Professor
PULSE Fellow: No
Applicable Courses: Biochemistry and Molecular Biology, Bioinformatics, Cell Biology, Ecology and Environmental Biology, Evolutionary Biology, General Biology, Genetics, Integrative Biology, Microbiology, Neuroscience, Organismal Biology, Physiology & Anatomy, Plant Biology & Botany, Virology
Course Levels: Across the Curriculum, Faculty Development, Introductory Course(s), Upper Division Course(s)
Approaches: Material Development
Keywords: inquiry-based integrative genomics bioinformatics faculty-development

Name, Title, and Institution of Author(s): Erica J. Crespi, Vassar College Ross H. Nehm, Ohio State University Jodi A. Schwarz, Vassar College Susan Singer, Carleton College Cathryn A. Manduca, Carleton College Eliot C. Bush, Harvey Mudd College Elizabeth Collins, Vassar College Cara M. Constance, Hiram College Derek Dean, Williams College David Esteban, Vassar College Sean Fox, Carleton College John McDaris, Carleton College Carol Ann Paul, Wellesley College Ginny Quinan, Wellesley College Kathleen M. Raley-Susman, Vassar College Marc L. Smith, Vassar College Christopher S. Wallace, Whitman College Ginger S. Withers, Whitman College Lynn Caporale, Consultant

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: The integration of genomic and bioinformatic approaches into undergraduate curricula represents one response to the national calls for biology teaching that is more quantitative and that promotes deeper understanding of biological systems through interdisciplinary analyses. Yet relatively few of the faculty members who teach undergraduate biology have expertise in the fields of genomics or bioinformatics. For these instructors, designing new teaching labs in a field that is developing so rapidly can feel particularly daunting. Our genomics education initiative was designed to address the challenges of helping faculty members integrate genome-scale science into the undergraduate classroom.

Describe the methods and strategies that you are using: The project utilized a grassroots model for faculty development, by supporting a national consortium of faculty members from eight liberal arts colleges in 1) learning about genomics and bioinformatics; 2) developing curriculum and laboratory teaching materials that stem from their own research and/or teaching interests, and that are informed by research in the learning sciences; and 3) devising tools to evaluate the efficacy of their genomics curricular innovations. Three workshops over three years supported these goals through a combination of learning from expertise within the participating group and from outside expertise on specific topics. The workshops brought together a total of 34 faculty participants from 19 institutions to develop a set of lab modules containing a substantial genomics component. Building on a proven faculty development model formulated by the geoscience education community, we complemented the multi-workshop program with a web-based interactive information portal. The initiative was structured such that the iterative interactions resulting from our three-workshop series would allow participants to share the experience of curriculum development, from the inception of an idea for a curricular module to the assessment of the implementation of that module, thereby generating a community of genomics educators among undergraduate institutions in the process. In addition, by bringing together educators from different institutions and scientific backgrounds, we aimed to stimulate discussion of interdisciplinary approaches to teaching genomics and facilitate the establishment of collaborations with other colleges and universities.

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: Products include peer-reviewed, guided inquiry-based, integrated instructional units (I3Us) adaptable to a range of teaching settings, with a focus on both model and non-model systems. Each curricular module is built on vetted design principles: (1) they have clear pedagogical objectives; (2) they are integrated with lessons taught in the lecture; (3) they are designed to integrate the learning of science content with learning about the process of science; and (4) they require student reflection and discussion (National Research Council, America’s Lab Report, Committee on High School Science Laboratories: Role and Vision; 2005). Each I3U was peer reviewed by fellow participants, as well as by a professional project consultant who has extensive experience with web-based description of teaching materials using this format to ensure that the I3U met the design criteria articulated above, and to evaluate whether the Activity Sheet provided both an easily accessible overview of the content and enough detailed information for other instructors to adapt and implement the material and its associated assessment strategies.

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: Eleven I3Us were designed and implemented as multi-week modules within the context of an existing biology course (e.g., Microbiology, Comparative Anatomy, Introduction to Neurobiology); an additional three I3Us were incorporated into interdisciplinary Biology/Computer Science classes. Although these I3Us were designed for courses currently taught by the project participant within the specific institution’s curriculum, we propose that they can be inserted into other courses that encompass similar content and/or learning goals. We have received numerous communications from colleagues at other institutions who have adapted our I3Us for their courses.

Describe any unexpected challenges you encountered and your methods for dealing with them: Many participants lacked expertise needed to analyze sequence data or design wet labs and were overwhelmed by the array of possible tools, deciding which tools were useful in which scientific contexts, and the challenges of mastering their user interfaces. Some were concerned about teaching material with which they had little previous scientific experience. Most were isolated from colleagues who shared their interest or had the needed expertise to support their initial learning in this area. We provided hands-on training in three intensive days of short workshops, enabling participants to become familiar with bioinformatic tools for finding sequences, predicting the structure of proteins, visualizing and comparing genomes, and constructing phylogenetic trees. Participants who needed significantly more time to explore the tools and develop self-sufficiency maintained communication with at least one of the presenters over the course of the year, to obtain more training and to get ideas. For many, adapting bioinformatics tools into their modules was more easily accomplished by asking phylogenetic questions rather than adapting tools that could be used to explore genome-level questions of gene function or structure. The greatest challenge was that no robust assessment system, characterized by valid and reliable instruments evaluated by experts in education and psychometrics, existed to assess the efficacy of newly developed genomics and bioinformatics curricula. To help faculty build assessment tools, we provided: (1) A professional development session for faculty participants that reviewed the basics of educational assessment and the types of tools that could be employed in assessment efforts; (2) Individualized consultations to help participants build their assessments; and (3) Individualized consultations with faculty to assist in the interpretation of assessment data derived from point (2) above.

Describe your completed dissemination activities and your plans for continuing dissemination: All modules, together with extensive supporting material, are accessible on a dedicated website (https://serc.carleton.edu/genomics/activities.html) that also provides links to bioinformatics tools and on-line assessment and pedagogical resources, as well as all presentations from all three workshops, pre- and post-workshop content, and suggested readings provided by workshop leaders. The project website serves as a portal to Activity Sheets describing each I3U; these Activity Sheets include learning goals, teaching tips, and links to teaching materials, as well as downloadable assessment tools, that can be customized by any interested educator. Information about the collection of I3Us has been disseminated via publication.

Acknowledgements: This information has been published previously (Cell Biology Education-Life Science Education 11:203-208; 2012). The project was funded by the Teagle Foundation, with supplemental support from Williams College, Vassar College, and Schering-Plough.

Biochemistry Curriculum Initiatives at UVA

Return to search results | New search

Title of Abstract: Biochemistry Curriculum Initiatives at UVA

Name of Author: Linda Columbus
Author Company or Institution: University of Virginia
Author Title: Asst. Prof.
PULSE Fellow: No
Applicable Courses: Biochemistry and Molecular Biology, Biophysics
Course Levels: Across the Curriculum, Faculty Development, Upper Division Course(s)
Approaches: Assessment, Changes in Classroom Approach (flipped classroom, clickers, POGIL, etc.), Material Development
Keywords: Integrated, research-based, active learning, curriculum design, engaging the community

Name, Title, and Institution of Author(s): John Hawley, University of Virginia

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: The goal of our initiatives is to increase student learning through the design of an integrated and research-based curriculum and creating an institutional and national community of faculty.

Describe the methods and strategies that you are using: Student-centered learning. A research-based undergraduate biochemistry laboratory was designed. The students’ (85-90 per year) biochemically characterize a protein for which a 3D structure has been determined, but functional data is not reported. Effective teaching practices were introduced and learning materials were developed. Students use knowledge from this course and past courses to design and execute a functional assay of their protein. The year-long course concludes with student groups preparing a manuscript, and orally presenting a poster detailing their results. I developed an upper-level course “From Lab Bench to Medicine Cabinet” that utilizes the CREATE method to teach students how to read primary literature that highlights basic science contributions to therapeutic development. The students share and lead discussion using the steps of the CREATE method. The students write two research papers on a therapeutic and give two presentations. Campuswide commitment to change. I received a UVA grant to fund outside speakers to demonstrate the balance of teaching and research and the adoption of effective teaching practices (~80 UVA faculty). In addition, I have organized a group (20 faculty) in the college that focuses on increasing minority participation through the UVA LSAMP program. Engaging the biology community. I organized a workshop “Teaching Science Like We Do Science” at the annual Biophysics Society meeting (~50 participants/yr). I participate and help organize a New Faculty Workshop for Chemistry faculty that focuses on effective teaching practices and assessment (PI, Andrew Feig)

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: For the research-based laboratory course, a number of different assessments (SALG, learning gain focused grading rubrics, and pre- and post-testing) show that the students learning gains improved with the designed year-long undergraduate biochemistry laboratory. For the Lab Bench to Medicine Cabinet, I assess their learning through the development of their concept maps and the quality of their writing assignments and presentations

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: Since the courses have been offered, ~360 students have participated. For the courses developed, the students perceive increased confidence and performance in biochemistry concept and performance, and in scientific literacy. Based on the course assessments, the students have achieved the learning goals that we have established. It is difficult to assess the impacts on the faculty and institutions that my efforts have had. Anecdotally, some faculty have engaged and come together with interest and determination to change their curriculum and methods. This year, our general chemistry laboratory has begun to implement active-learning modules. Our initiatives provided a ground-up approach by enabling the faculty to generate ideas and interests to match the administrations initiatives and funding for change.

Describe any unexpected challenges you encountered and your methods for dealing with them: Organizing a research-based laboratory for 85 students has come with many unanticipated difficulties. Training teaching assistants in active-learning instruction was a major challenge. In addition, detailed grading rubrics still remain a challenge in terms of reliable assessment of learning gains. Uninterested and unwillingness to accept or adopt change in the faculty is still a major challenge. In addition, convincing the faculty that quality teaching and research are not mutually exclusive is still a major challenge.

Describe your completed dissemination activities and your plans for continuing dissemination: In order to facilitate adoption of a similar curriculum by others, this course was intentionally designed to be highly modular. This modularity allows instructors to focus on standalone portions of the curriculum. Furthermore, widespread dissemination of the course material is enabled by a website (https://biochemlab.org).

Acknowledgements: NSF MCB 0845668, NSF DUE 1044858, and a Cottrell Scholar Award from the Research Corporation for the Advancement of Science.

Molecular Biology Simulations for Case Based Learning

Return to search results | New search

Title of Abstract: Molecular Biology Simulations for Case Based Learning

Name of Author: Karen Klyczek
Author Company or Institution: University of Wisconsin-River Falls
Author Title: Professor
PULSE Fellow: No
Applicable Courses: Agricultural Sciences, Biochemistry and Molecular Biology, Bioinformatics, Biotechnology, Cell Biology, Evolutionary Biology, General Biology, Genetics, Immunology, Integrative Biology, Microbiology, Virology
Course Levels: Introductory Course(s), Upper Division Course(s)
Approaches: Changes in Classroom Approach (flipped classroom, clickers, POGIL, etc.), Material Development
Keywords: computer simulations case studies bioinformatics molecular biology

Name, Title, and Institution of Author(s): Mark Bergland, University of Wisconsin-River Falls

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: Our goal is to facilitate case studies and other active learning strategies via development of computer simulations of molecular biology lab techniques. This project addresses Vision and Change recommendation to relate biology concepts to real-world examples and make biology content relevant for students. The NSF-funded Case It project has produced case studies mainly in genetic and infectious diseases, in which students use simulation software to analyze authentic DNA and proteins sequences associated with the cases. By analyzing these cases, students address several core competencies, including applying the process of science, using quantitative reasoning, using modeling and simulation, and understanding the relationship between science and society. Based in part on the recommendations in the Vision and Change report, we have developed materials designed to prepare students for research projects involving bioinformatics analysis, to extend the existing case studies and for use with student-generated experiments. The software and materials are made available free of charge on the Case It web site (www.caseitproject.org) and have been used by secondary and undergraduate schools worldwide. Case It was awarded a 2011 Science Prize for Inquiry-based Instruction (Bergland et al. 2012, Science 337, 426 (2012).

Describe the methods and strategies that you are using: Case It is an open-ended simulation that reads any nucleotide or amino acid sequence file, and includes methods for analyzing DNA and proteins. These methods include restriction digestion and mapping, polymerase chain reaction (PCR), DNA electrophoresis, Southern blotting and dot blotting, microarray analysis, protein electrophoresis, Western blotting, and ELISA. Bioinformatics capabilities (sequence alignment, tree building) have been added via integration with MEGA software. The download includes the simulation as well as all of the sequences necessary to run the cases described on the web site. The case descriptions can be viewed from the Case It home page or downloaded as a pdf file. Students read case scenarios and explore background information for the case. They then use the simulation to open sequence files associated with the case and run the appropriate procedure to analyze the sequences, generating results in the form of images that can then be incorporated into presentations or reports. At the introductory-biology level, students can assume roles of persons in the cases, such as health-care professionals, lab technicians, researchers, or hypothetical family members. They then discuss results either in person or online. The open-ended nature of the simulation encourages inquiry by enabling users to analyze any DNA sequence, including entire viral or bacterial genomes, with any probe, primer, or restriction enzyme. For example, freshmen at UWRF participating in the HHMI Science Education Alliance PHAGES project use the Case It simulation to generate virtual digests of known phage genomes for comparison with actual gels of their newly discovered phages.

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: Assessment of the use of the Case It materials has demonstrated that it provides an active and collaborative learning environment that engages and motivates students. Pre- and post testing as well as individual and focus group interviews were used to assess its impact on student learning and perceptions in courses at several institutions in the United States and Puerto Rico. In all courses, students demonstrated significant learning gains as a result of using the simulation to analyze case studies involving bioinformatics analysis. In addition, students reported that the activities allowed them to explore science concepts from multiple perspectives in a real world context. The instructor-independent efficacy demonstrated in these studies indicates that the use of Case It materials has the potential to be scalable in a variety of institution types.

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: Since 2012, the Case It software has been used by more than 10,000 students at 60 schools around the world. It was downloaded by many more faculty, from 105 different countries, so there is likely to be additional use that we have not been able to document. When we have assessed the impact on students in classes as described above, students using Case It showed improved post-test scores, and students' confidence in their knowledge also increased (Wolter et al., 2012, J Sci Educ Technol DOI 10.1007/s10956-012-9387-7). Faculty involved in software development, case writing, and assessment have been able to cite this work as scholarly activity for retention, promotion and tenure purposes.

Describe any unexpected challenges you encountered and your methods for dealing with them: Barriers to implementation of the Case It software include the need for faculty training in the use of the simulation. To address this issue, we have given many workshops at professional meetings and at the invitation of biology departments. We also have developed screencast tutorials that are posted on the web site. The web site also includes discussion forums where questions about the use of the simulation can be addressed. Finally, we are exploring the development of mobile applications of the software for use on tablets and other devices.

Describe your completed dissemination activities and your plans for continuing dissemination: We have given over 50 presentations, including workshops, oral presentations, and posters, at science education meetings in a variety of venues. In 2013 so far, we have presented at the NSF/AAAS TUES conference, American Society for Microbiology Conference for Undergraduate Educators, Science Case Network conference, and HHMI Quantitative Biology/BioQUEST workshop. We no longer have grant funding, but still plan to present at conferences as funding allows. Limited travel funds are available through the University of Wisconsin-River Falls, and from conference organizers when we are invited to present. We have published several papers describing strategies for implementing Case It and assessing its effectiveness, in Science, the Journal of Science Education Technology, American Biology Teacher, and others. In 2011 we joined the Science Case Network RCN-UBE project, and are collaborating with other case study and problem based learning projects to dissemination information and resources for faculty interesting in incorporating these active learning strategies (www.sciencecasenet.org). In 2012, the Case It web site, www.caseitproject.org, has been updated to include more interactive features and facilitate more effective dissemination of materials, and will continue to be updated.

Acknowledgements: The National Science Foundation has provided funding to support development, dissemination, and assessment of Case It materials (DUE grants 9455425, 9752268, 0229156, 0717577). Mary Lundeberg, formerly at Michigan State University and the University of Wisconsin-River Falls, has coordinated assessment of the project, with assistance from undergraduate and graduate students; in particular, Bjorn Wolter, former MSU graduate student. Chi-Cheng Lin assisted with critical aspects of the software that allowed incorporation of bioinformatics features. Rafael Tosado, Interamerican University of Puerto Rico-Metro Campus, Arlin Toro, Interamerican University of Puerto Rico-San German, and C. Dinitra White, North Carolina A & T State Unviversity, assisted in case development and assessment in their courses. Kim Mogen, Brad Mogen, University of Wisconsin-River Falls, and Eric Ribbens, Western Illinois University, have written case scenarios. Numerous faculty and student users have provided feedback on software features and ideas for new cases. The University of Wisconsin-River Falls College of Arts & Sciences and Provost’s office have provided support for faculty time and travel to conferences.

Enabling Student Success: A Learner-Centered Methodology

Return to search results | New search

Title of Abstract: Enabling Student Success: A Learner-Centered Methodology

Name of Author: Stephen Aley
Author Company or Institution: University of Texas at El Paso
Author Title: Professor
PULSE Fellow: No
Applicable Courses: and Pre-Calculus, Biochemistry and Molecular Biology, Bioinformatics, Chemistry, Ecology and Environmental Biology, Evolutionary Biology, General Biology, Genetics, Microbiology, Organismal Biology, Physics, Virology
Course Levels: Across the Curriculum
Approaches: Assessment, Changes in Classroom Approach (flipped classroom, clickers, POGIL, etc.), Material Development
Keywords: Peer-Led Team Learning (PLTL) Curricular Research Interdisciplinary Quantitative Biology Assessment

Name, Title, and Institution of Author(s): James E. Becvar, University of Texas at El Paso Ann H. Darnell, University of Texas at El Paso

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: The Biology undergraduate curriculum at the University of Texas at El Paso is undergoing vast changes that address both the University Mission (a pursuit for excellence in education while providing access to the people of El Paso) and a response to the state of Texas legislature’s call for a larger percentage of students graduating. UTEP Biology undergraduate students are 85% Hispanic, mirroring the population of El Paso and reflecting national trends. The intended outcome is to graduate more students and increase participation of underrepresented students in biomedical research.

Describe the methods and strategies that you are using: The change strategy focuses on a learner-centered methodology. Beginning in 2000, the curriculum format for general chemistry changed by replacing one faculty-delivered lecture (passive learning) per week with a required weekly two-hour workshop (active learning). The workshop includes one hour of problem solving in teams guided by a Peer Leader, followed by one hour of hands-on explorations. The explorations are simple experimental activities which promote student-initiated inquiry, guided by the Peer Leaders. Many activities are based on biology, demonstrating real-world examples of the conceptual material that students encounter in lecture. Building upon this active learning approach, a 2006-awarded HHMI grant implemented undergraduate research for at least one semester, and potentially two, for all biology majors. In 2007, an NSF-funded STEP grant expanded the chemistry peer-led workshop model to mathematics and physics. In 2008, NIH provided funding for a major curricular reform where the Core Competencies (Vision & Change, 2011) of quantitative reasoning, modeling and simulation were implemented, beginning with the first introductory biology course, concluding with new course development that consolidates courses designed to prepare students for various graduate studies including Bioinformatics and Biomedical Engineering. Eleven additional undergraduate biology courses (three of which were associated laboratory courses) were either revamped or developed (NIH MARC II) with the goal of increasing the emphasis on biological modeling, computational knowledge, statistical analysis, and data analysis. This curricular reformation targeted not only the increased understanding of core concepts including the ability to make connections among interdisciplinary problems, but an increase in perception of relevance of mathematics and computer modeling in the systems approaches required today.

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: 1) Successful course completion 2) Tracking students to graduation 3) Matriculation to graduate and professional school 4) Attitudinal surveys Results of these curricular modifications show that over a six year period between the fall of 2006 and the fall of 2012, the number of biological science students has nearly tripled at UTEP, with the percentage of underrepresented students, primarily Hispanic, rising 10% (to over 85%). Part of this growth is due to less attrition. Assessing degree output six years prior, the graduation rate has risen for those students who declare a major in a biology discipline (from 78% to 85%) over a six year timeframe. If we only maintain an 85% graduation rate, by 2018 we should see more than 1200 students, 85% which are Hispanic, entering the workforce or continuing at the graduate level prepared to critically address not only biology-related problems but complex interdisciplinary issues and challenges of the 21st century.

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: The positive outcomes of the program not only include improved student success in course, but also the enhancement of professional development gained through self-guided and team-guided inquiry, presentation, and leadership opportunities. Leaders gain significant confidence in public speaking and motivational skills. Due to our unique program implementation, undergraduates have a great opportunity to significantly enhance the program. This is because they use their own creativity and are permitted to incorporate their suggestions. The expanded knowledge and experiences gained in peer-led workshops, undergraduate research, and interdisciplinary team-based learning activities are crucial to students planning careers in the research, medical, biotechnology, or academic fields. The modified biology curriculum creates stronger thinkers and self-learners. The institutional structure was impacted with the addition of student-only research laboratories where students learn by doing. *All biology students have an undergraduate research experience built into the courses *Increased statistics knowledge *Increased graduation *Increased matriculation into graduate and professional school *Team building *Leadership skills *Communication skills

Describe any unexpected challenges you encountered and your methods for dealing with them: Maintaining curricular changes

Describe your completed dissemination activities and your plans for continuing dissemination: Presentations at multiple meetings Writing one or more journal articles

Acknowledgements: NIH, NSF, HHMI

Expanding a Research-Infused Botanical Curriculum

Return to search results | New search

Title of Abstract: Expanding a Research-Infused Botanical Curriculum

Name of Author: Jennifer Ward
Author Company or Institution: University of North Carolina at Asheville
Author Title: Assistant Professor
PULSE Fellow: No
Applicable Courses: Agricultural Sciences, Biochemistry and Molecular Biology, Ecology and Environmental Biology, General Biology, Plant Biology & Botany
Course Levels: Across the Curriculum, Introductory Course(s), Upper Division Course(s)
Approaches: Adding to the literature on how people learn, Assessment, Changes in Classroom Approach (flipped classroom, clickers, POGIL, etc.), Material Development
Keywords: assessment, consortium, inquiry, plant biology, undergraduate research,

Name, Title, and Institution of Author(s): H. David Clarke, University of North Carolina at Asheville Jonathan L. Horton, University of North Carolina at Asheville

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: Our goals were to incorporate inquiry-based research experiences into undergraduate plant biology courses , including lower-division botany (required of all majors), so that all students had an authentic undergraduate research experience. We hoped to improve student learning of course content and familiarize them with the scientific process. Finally, we worked to overcome barriers of faculty time, student time/preparation, and funding.

Describe the methods and strategies that you are using: Undergraduate students developed and tested curricular modules based on their own independent research projects. These modules were tested by other research students before being used in a classroom setting. Then, undergraduate classroom students used modules in their plant biology lab courses, generating hypotheses and data related to the larger research project. In the past three years, we have involved over 300 classroom students and 12 undergraduate research mentors in this project.

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: To determine if exposure to the research-infused botanical curriculum increased students' content knowledge, we administered a quiz in Moodle courseware. To assess the effects of our new curriculum on students' scientific process, we used rubric scores on two journal-style papers; the rubric was tested for intergrader reliability. All data were analyzed with SAS 9.2 with PROC GLM and PROC PAIREDT.

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: Student scores on journal-style papers rose after use of our curricular modules (P = 0.001), and sophomores improved their abilities to state hypotheses (P = 0.001), identify types of variables (P = 0.001), and choose appropriate statistical analyses (P = 0.017). Comparing pre- and post-test results demonstrated that students perceived significant gains in field experience, experimental design and analysis ability, writing experience, comfort with citing primary scientific literature, and recognizing the importance of plant science (P < 0.05 for all). In addition, they gained content knowledge in some botanical subdisciplines (P < 0.05). Research students also showed positive shifts in attitudes towards teaching and their own research. Our approach has now been adopted by other courses, departments, and regional universities.

Describe any unexpected challenges you encountered and your methods for dealing with them: In response to students' ongoing challenges in data interpretation, we have changed the way in which we teach these subjects.

Describe your completed dissemination activities and your plans for continuing dissemination: Results have been presented at 4 disciplinary conferences and 2 education conferences, and we are preparing them for publication. In late 2012, we created a coordinated undergraduate research network to investigate Southern Appalachian ecosystems’ resilience to environmental change. This research focus will serve as a platform for imparting botanical knowledge while advancing quantitative literacy, improving student attitudes towards STEM and NOS (Nature of Science), teaching creative STEM thinking, and encouraging higher-order cognitive processes. The place-based curricular modules that we are creating will be partially developed and administered by undergraduate and graduate research students (3 graduate T.A.s per year) and will have a direct impact on the learning of over 1000 undergraduates per year, including B.S.Ed. students.

Acknowledgements: Undergraduate research students included Scott Arico, Katherine Culatta, Jacob Francis, David Greene, Jennafer Hamlin, Ashley Hanes, Karissa Keen, Aaron Maser, Joseph McKenna, Megan Rayfield, Matt Searels, Katherine Selm, and Emmalie von Kuilenberg. This work was funded by the National Science Foundation (DUE 0942776) and the North Carolina Biotechnology Center.

Designing a Coherent Curriculum in Molecular Biosciences

Return to search results | New search

Title of Abstract: Designing a Coherent Curriculum in Molecular Biosciences

Name of Author: Michael KLymkowsky
Author Company or Institution: University of Colorado Boulder
PULSE Fellow: No
Applicable Courses: All Biological Sciences Courses, Biochemistry and Molecular Biology, Cell Biology, Evolutionary Biology
Course Levels: Introductory Course(s), Upper Division Course(s)
Approaches: Adding to the literature on how people learn, Assessment, Changes in Classroom Approach (flipped classroom, clickers, POGIL, etc.), Material Development, Mixed Approach
Keywords: evolutionary and molecular biology, general chemistry, teaching and learning biology, flipped classroom, embedded formative assessments

Name, Title, and Institution of Author(s): Melanie M. Cooper, Michigan State University Erin M. Furtak, University of Colorado, Boulder

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: Our goals are to develop courses, course materials, curricula, and formative assessments that help students reach a level of disciplinary competence so that they can ‘think like a scientist’. In the case of students who go on to become science teachers, it is particularly critical that their undergraduate degree programs provide them with a confident and accurate understanding of the key ideas in biology and the ability to extend their understanding to new areas.

Describe the methods and strategies that you are using: In order to generate more coherent and effective curricula we have focused on both early and late courses. To that end, we have developed two college level introductory courses and one upper-division ‘capstone’ course. The two introductory level courses are Biofundamentals, a one-semester introduction to molecular bioscience, and Chemistry, Life, the Universe & Everything (CLUE), a two-semester introductory general chemistry course. Both texts and associated materials are based on the identification of key conceptual and recurrent strands within these subjects. In molecular bioscience these are evolutionary mechanisms, physicochemical systems, and interaction networks [1], while in chemistry we focus on molecular-level structure, energy, and macroscopic properties [2]. The ‘capstone’ course, Teaching and Learning Biology (TaLB), has been taught at both UC Boulder and ETH Zurich, and is designed to help students reflect on their understanding of core biological ideas, how they know them, and how they might teach them. Both CLUE and Biofundamentals are available on-line; a book-like version of CLUE is available upon request, and a book-like version of Biofundamentals should be available by the end of 2013.

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: Our evaluation of student performance in these courses relies heavily on take home and in-class activities, many delivered through our beSocratic system (beSocratic.com)[3] which uses student generated graphics (drawings, chemical structures, and graphs) and textual inputs as the basis of formative assessments. In the case of CLUE, student performance has been tracked longitudinally and compared to that of matched students in conventional courses. For example, students’ understanding of the relationship between molecular structure and physical properties are significantly improved by the CLUE treatment [4,5] and this improvement persists as they move into a conventional organic chemistry course. Using nationally normed American Chemical Society (ACS) examinations reveals similar levels of performance for both cohorts. We are currently analyzing the results from various beSocratic type formative assessments, used in the Biofundamentals and TALB courses, to compare the quality of students’ ability to model various biological processes, with the goal of characterizing weaknesses and strengths in the current curriculum.

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: This is, of course, the most challenging hurdle to jump, since changing the underlying curriculum is difficult, particularly when compared to often superficial changes in pedagogical technique [6]. We have been working to publicize the longitudinal improvements obtained using CLUE (manuscript in preparation) and working to examine the effects of the Biofundamentals curriculum. As part of this latter project, we are using beSocratic data obtained from the Fall 2012 version of the course to rewrite the text, redesign activities, and develop new ‘end of curriculum’ assessments that can be used to this purpose. We have a publishing contract for CLUE, and plans are underway to extend the CLUE curriculum into the large enrollment general chemistry courses at Michigan State University. In addition, we have tracked a number of students who took the TaLB course at the University of Colorado and have found that the course inspired them to change their career trajectories [7]. For example, one student entered a discipline-based education research PhD program at Purdue, another opened an after-school program in his home country of Korea, and another student entered a teaching masters’ program at another university.

Describe any unexpected challenges you encountered and your methods for dealing with them: The process of building coherent curricula (texts and assessments) is an iterative one. As we collect data from students, we learn not only to identify ideas that are difficult to master but also to distinguish assessments that are valid and reliable from those that are not. Our approach to evaluation of these courses has evolved from a control treatment quasi-experimental design to design based experiments [8]. In the ‘real world’ it is unrealistic to expect to control all variables, and we find that it is more useful to continuously feedback the formative assessment findings into the course design process.

Describe your completed dissemination activities and your plans for continuing dissemination: We have been preparing and publishing manuscripts and various other presentations on the design and efficacy data associated with the CLUE, and to a lesser extend the Biofundamentals courses. As part of the TaLB course, we have been posting students’ final short (10-15 minutes) video lessons on specific topics on-line through YouTube, and hope to aggregate them into a Teaching and Learning Biology Channel.

Acknowledgements: Support for these projects has been supplied by the NSF (DUE #0816692, TUES #1043707, TUES #1122472, as well as NMSI support of CU Teach, and a visiting professorship from the ETH. Literature cited: 1. Klymkowsky, M.W., Thinking about the conceptual foundations of the biological sciences. CBE Life Science Education, 2010. 9: p. 405-7. 2. Cooper, M.M. & M.W. Klymkowsky, Chemistry, Life, the Universe and Everything (CLUE): A new approach to general chemistry, and a model for curriculum reform. J. Chem. Educ., 2013. in press. 3. Bryfcyzynski, S., et al., BeSocratic: Graphically-assessing student knowledge, in International Association for Development of the Information Society Conference on Mobile Learning. 2012: Berlin, Germany. 4. Cooper, M.M., S.M. Underwood, & C.Z. Hilley, Development and validation of the Implicit Information from Lewis Structures Instrument (IILSI): Do students connect structures with properties?' Chem. Educ. Res. Pract., 2012. 13, 195-200, DOI: 10.1039/C2RP00010E. 5. Cooper, M.M., et al., Development and Assessment of a Molecular Structure and Properties Learning Progression. J. Chem. Educ., 2012. 89: p. 1351-1357. 6. Klymkowsky, M.W. & M.M. Cooper, Now for the hard part: the path to coherent curricular design. Biochem Mol Biol Educ, 2012. 40: p. 271-2. 7. Furtak, E.M. Exploring the Utility of Discipline-Specific Pedagogy Courses in Science Teacher Recruitment and Preparation. Presentation at the Annual Meeting of the National Association of Research in Science Teaching, 2010. 8. Brown, A.L. Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 1992 2: p. 141-178.

A New Model for a University 2 + 2 STEM Degree Program

Return to search results | New search

Title of Abstract: A New Model for a University 2 + 2 STEM Degree Program

Name of Author: Jennifer Drew
Author Company or Institution: University of Florida
PULSE Fellow: No
Applicable Courses: All Biological Sciences Courses, Biochemistry and Molecular Biology, Bioinformatics, Cell Biology, Genetics, Microbiology, Virology
Course Levels: Across the Curriculum
Approaches: Mixed Approach
Keywords: Genomics Distance Education transfer online education Microbiology

Name, Title, and Institution of Author(s): Sebastian Galindo-Gonzalez, University of Florida Eric W. Triplett, Professor, University of Florida

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: Our original efforts began with the development of a single undergraduate course, Bacterial Genome Sequencing & Analysis, in 2006, and without a doubt, the original vision of that course has prompted a cascade of changes and resulted in a cultural shift in our department to one of continual reassessment and improvement of our educational programs. Our vision has expanded far beyond this original course to the departmental level by revamping the entire curriculum, establishing a campus-wide minor program, and expanding the reach of these reforms with a distance degree program. Our overall objective is to demonstrate the success of a new model of increasing the number of STEM graduates and the diversity of graduates while upholding high degree standards and maintaining a cutting-edge curriculum.

Describe the methods and strategies that you are using: The University of Florida Microbiology & Cell Science Distance Education B.S. degree program officially began in Fall 2011 (https://microbiology.ifas.ufl.edu). This program is designed for Associate of Arts graduates to transfer into UF as distance students to complete the remaining two years towards their B.S. degree in MCS. The primary advantage and unique feature of this program is that the students will earn a 4-year degree from UF without relocating to Gainesville because the majority of the coursework is taught by distance. Often our best research universities, particularly public research 1 universities, are located in small college towns located over 100 miles from the major urban centers of their respective states. We believe that the physical and cultural distance between many public research 1 universities and the country's major urban centers is a leading impediment to the recruitment of outstanding low-income students of diverse backgrounds to the STEM disciplines. We hypothesize that by bringing the curriculum to qualified students through distance education, we can increase the number and diversity of microbiology graduates. We are forming partnerships with all 28 of Florida's community colleges to expand this program, but the first and most significant partnership is with Miami Dade College (MDC), the largest minority-serving institution in the US with over 170,000 students. Miami Dade College and UF signed an articulation agreement in 2011. We work with administration, faculty, and students to design elements of the degree program that specifically address the needs of the underrepresented population of MDC.

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: Outcomes will be determined by evaluating endpoints of total number of majors, total graduates, time to graduate as well as data from long-term tracking of graduates. Program quality, enrollment numbers, as well as retention and recruitment strategies are being thoroughly assessed by an experienced evaluator.

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: To date, 47 students have enrolled in the online program, and four have graduated. The online program is increasing the participation of underrepresented minorities in STEM. Currently, 26% of enrolled students are Hispanic, which is an increase over the baseline proportion of Hispanic students at the University of Florida (18%). The long-term success of this program will be watched carefully by the institution. Many other departments are interested in adopting this model of degree delivery if this program proves a successful and sustainable endeavor.

Describe any unexpected challenges you encountered and your methods for dealing with them: We have recognized some barriers to success and have developed strategies to overcome those barriers such as improving administrative services (admissions, financial aid) and steadily encouraging faculty buy-in for online teaching formats. Enrollment numbers are increasing steadily, and beginning in March 2012, a marketing firm with expertise in online degree programs began to promote the program to help with recruitment. Numbers are now increasing at a faster pace, and interested students from Florida and across the nation inquire about the program daily.

Describe your completed dissemination activities and your plans for continuing dissemination: Since 2008, aspects of these curriculum efforts have been published in peer reviewed journal articles and presented in local and national conferences such as the American Society of Microbiology Conference for Undergraduate Educators and the NSF TUES Conference in 2013. Currently, a manuscript is in preparation describing the creating of a new model of a 2 + 2 program in STEM. Future plans include additional publications and meeting participation.

Acknowledgements: The authors would like to acknowledge three awards from the National Science Foundation from the Division of Undergraduate Education: Course, Curriculum and Laboratory Instruction (CCLI) Phase 1 (DUE 0737027), CCLI Phase 2 (DUE-0920151), and STEM Talent Expansion Project (STEP) grant (DUE-1161177).