Integrating Statistics into the Life Sciences Curriculum

Return to search results | New search

Title of Abstract: Integrating Statistics into the Life Sciences Curriculum

Name of Author: Edward Bartlett
Author Company or Institution: Purdue University
Author Title: Associate Professor
PULSE Fellow: No
Applicable Courses: Biochemistry and Molecular Biology, Cell Biology, Ecology and Environmental Biology, Evolutionary Biology, General Biology, Integrative Biology, Microbiology, Neuroscience, Organismal Biology, Physiology & Anatomy, Virology
Course Levels: Across the Curriculum, Faculty Development, Introductory Course(s), Upper Division Course(s)
Approaches: Assessment, Changes in Classroom Approach (flipped classroom, clickers, POGIL, etc.), Material Development
Keywords: undergraduate research, modules, faculty learning community, secondary school teachers.

Name, Title, and Institution of Author(s): James Forney, Purdue University-West Lafayette Ann Rundell, Purdue University-West Lafayette Kari Clase, Purdue University-West Lafayette Stephanie Gardner, Purdue University-West Lafayette Omolola Adedokun, Purdue University-West Lafayette Dennis Minchella, Purdue University-West Lafayette

Goals and intended outcomes of the project or effort, in the context of the Vision and Change report and recommendations: Our program has 4 components: 1) Summer undergraduate research program 2) Faculty learning community 3) Curriculum development 4) Secondary school teacher development and research. The objective of our HHMI-funded summer research program is to bring together faculty and undergraduate students from an array of academic institutions and disciplines to provide a facilitated ‘hands-on’ experience focusing on experiment design and statistical analysis within the context of life science-related research projects. The objectives of the faculty learning community are twofold. First, it brings together interested faculty, graduate students and postdocs to discuss advances, innovations, and best practices in teaching and curriculum. Second, it facilitates the design of course modules that will be used for curricular development. The objective of the Curriculum Development component is to introduce experimental design, statistical and quantitative analysis, and critical evaluation of data throughout the life science curriculum through “plug and play” modules that are incorporated into existing courses. The objective of the teacher-scientist component is to provide secondary school teachers with research experiences as well as to provide training and ideas for incorporating statistical and data analysis into their life science courses.

Describe the methods and strategies that you are using: Eighteen undergraduate students (Purdue University WL, Purdue Calumet, Purdue University North Central, Indiana University-Purdue University Fort Wayne, Franklin College, Morehouse College, and Saint Mary’s College) were hosted within 18 different research laboratories on the West Lafayette Purdue University campus for an 8 week long research experience in 2011-2013. Our second Faculty Learning Community (FLC) began in September of 2011 with twelve members drawn from the departments of Statistics, Biological Sciences, Biochemistry, Biomedical Engineering, Industrial Technology, Horticulture, and Forestry. The group contained two postdoctoral researchers, seven tenure track faculty and two staff members (one from the Purdue Center for Instructional Excellence). Roughly half of the meetings were focused on statistics/learning module development and the other half on student learning (e.g. active learning, student development, learning and memory). During 2012, six new modules have been completed, bringing the total number of available modules to twelve. An additional five are being developed by the most recent cohort of FLC members (2013). Modules now cover a broad swath of the life sciences at Purdue, such as new modules in Forestry and in Speech, Language and Hearing Science. The new modules have covered statistical concepts such as the chi-squared test and Bayesian statistics and techniques in data analysis using confocal images of plant samples collected by the students. used STEMEdHub (https://stemedhub.org/groups/hhmibio). These are publicly available, and users may download the modules and provide feedback on them. In April 2012 the four teacher-scientists from the Summer Institute in 2011, presented a workshop at the Annual Meeting for the National Science Teachers Association in Indianapolis, IN, to approximately 30 teachers. The materials are available at: (http://www.nsta.org/conferences/schedule.aspx?id=2012ind).

Describe the evaluation methods that you used (or intended to use) to determine whether the project or effort achieved the desired goals and outcomes: For the summer research program, assessments were a combination of assessments of competency, such as portions of Garfield's Statistical Reasoning Assessments, as well as interviews. Assessment of the faculty learning community was mainly via interviews with participants. Assessments for curriculum development have largely been based on the individual modules themselves, taking the form of a written report by the students, a poster presentation, or exam questions for example. Assessments of the teacher-scientist program were mainly using interviews.

Impacts of project or effort on students, fellow faculty, department or institution. If no time to have an impact, anticipated impacts: Summer research has resulted in at least 2 journal publications with students as co-authors. Students rated the summer research very highly, including the quantitative training sessions during each week as a group, as well as the students' interactions with their mentors. Over 12 faculty members, 4 postdocs, and 2 graduate students have participated as learning community members. They have rated the interactions within the community quite highly, and their participation has resulted in the bulk of the available modules. The 'plug and play' modules have been incorporated into many of the introductory and intermediate level courses in Biology, Biochemistry, and Biomedical Engineering. In addition, the modules are publicly available through a hosted site at Purdue. Over 6 teacher-scientists have been trained and have acted as role models within the community, holding larger outreach events.

Describe any unexpected challenges you encountered and your methods for dealing with them: For the summer research program, things we will improve for will be to continue to transform the quantitative training sessions towards effective problem based learning and to reinforce the link between the statistical analysis and the student research experience. For the faculty learning community, finding enough interested postdocs and willing advisors was difficult. We then permitted graduate students to join the faculty learning community, and they have been equally helpful in facilitating discussions of teaching and development of modules. For curriculum development, now that a large number of modules have been initially created and implemented in classes, but more or less piecemeal, it is important to make the modules more seamlessly integrated throughout the life sciences curricula. To do this, we have engaged new faculty of introductory courses and permitted them to attend a teaching workshop (SI Institute) as well as gathered syllabi to find common topics taught across courses. Following two summers of teacher-scientist training, the evaluation team recommended that the ?teachers receive focused training/instruction in very basic statistics?data representation, probability, etc from a plain spoken source. This instruction should be combined with pedagogical sessions wherein teachers brainstorm or work with each other to translate basic statistical concepts into classroom activities in life science contexts.? In order to address this recommendation the summer institute was revised to include two master math teachers that could provide: exemplar lessons from their classrooms, resources that would be appropriate to use with students, advice and insight during data analysis discussions and planning sessions for translating workshop topics into the classroom.

Describe your completed dissemination activities and your plans for continuing dissemination: Dissemination of summer student research has taken the forms of journal articles and posters at national meetings. Dissemination of the modules developed by faculty learning community members has taken the form of links to a website through Purdue's STEMEdHUB: STEMEdHub (https://stemedhub.org/groups/hhmibio/). Dissemination of findings and discussions of teachers is available at: http://hhmipurdue.wikispaces.com/ In addition, the first year research course has resulted in journal articles on the course design of such a course. Future dissemination will focus on publishing results from the various components of the program separately in journals, as well as a publication describing the overall program and its results and impact.

Acknowledgements: The authors gratefully acknowledge the Howard Hughes Medical Institute for providing funds for this project.